Bifurcation Analysis for Timesteppers
نویسنده
چکیده
A collection of methods is presented to adapt a pre-existing time-stepping code to perform various bifurcation-theoretic tasks. It is shown that the implicit linear step of a time-stepping code can serve as a highly effective preconditioner for solving linear systems involving the full Jacobian via conjugate gradient iteration. The methods presented for steady-state solving, continuation, direct calculation of bifurcation points (all via Newton’s method), and linear stability analysis (via the inverse power method) rely on this preconditioning. Another set of methods can have as their basis any time-stepping method. These perform various types of stability analyses: linear stability analysis via the exponential power method, Floquet stability analysis of a limit cycle, and nonlinear stability analysis for determining the character of a bifurcation. All of the methods presented require minimal changes to the time-stepping code.
منابع مشابه
BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
In this paper, first we discuss a local stability analysis of model was introduced by P. J. Mumby et. al. (2007), with $frac{gM^{2}}{M+T}$ as the functional response term. We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef. Next, we consider this model under the influence of the time delay as the bifurcat...
متن کاملSystem Level Numerical Analysis of a Monte Carlo Simulation of the E. Coli Chemotaxis
Over the past few years it has been demonstrated that “coarse timesteppers” establish a link between traditional numerical analysis and microscopic/ stochastic simulation. The underlying assumption of the associated “lift-run-restrict-estimate” procedure is that macroscopic models exist and close in terms of a few governing moments of microscopically evolving distributions, but they are unavail...
متن کاملBifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کاملSimulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy
Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کامل